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Abstract

Estimating causal effects from observational data reveals the potential outcomes
of different treatments. However, the methods primarily focusing on numerical or
categorical covariates leave causal inference with textual observational data as an
unresolved issue. Specifically, the high-dimensional and unstructured nature of text
complicates the learning of representation vectors of causal structure from textual
covariates. This complexity is principally due to the interaction of different factors
within the textual covariates, making separating these factors crucial for the accurate
estimation of textual causal effects. To address this challenge, we propose a causal
disentangled representation learning method based on variational inference. The
method derives latent factors from observed textual covariates and decomposes them
into instrumental, confounding, and adjustment factors. Additionally, a learning cri-
terion that minimizes mutual information is employed to ensure the independence
of disentangled factors, and targeted regularization based on nonparametric estima-
tion is applied to reduce residual bias. Experimental results show that the proposed
method performs well on textual causal effect datasets and has higher performance
and competitiveness compared to strong baseline methods.
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1 Introduction

Causal inference is the process of estimating the impact of treatments on out-
comes [23, 36], which focuses on uncovering causal relationships, not just cor-
relations [2]. The application of deep learning to causal inference has recently
garnered significant interest from scholars [11, 54]. Most current deep causal
effect estimation models focus on classification or numerical variables, while text
data in natural language is crucial as it serves as the primary medium for human
communication and knowledge documentation. Indeed, causal problems in com-
putational social science often involve textual components, such as social media
posts, essays, and reviews, making the estimation of causal effects from textual
data essential. For instance, how do positive product reviews causally influence
product sales [38], and how does the gender displayed in user profiles causally
impact the number of likes received on posts [14]? Deep causal models focus-
ing on non-textual data often struggle to effectively address causal inference in
natural language. The limitation arises because high-dimensional textual data
contains richer information spanning topics, semantics, and sentiments [9]. These
characteristics present a new challenge in estimating the causal effect of textual
data, as its high dimensionality and diversity make analysis complex.

When performing causal inference on textual data, it requires extracting information
about treatments, confounders, and outcomes from the data. This involves transform-
ing the text into simpler, lower-dimensional representation vectors [13, 42]. Due to the
implicit information contained in textual data and the coupling between different factors,
it is crucial to learn representation vectors with causal structures to effectively identify
latent variables and their relationships [32]. Several current studies have attempted to
combine the fields of natural language processing (NLP) and causal inference [14], pro-
viding a more comprehensive analysis. NLP offers various methods, such as topic mod-
eling [24] and contextual embedding [32], to extract necessary information from text for
causal effect estimation. Roberts et al. [39] proposed a matching approach to resolve the
problem of confounding caused by textual data in observational studies and relied on
topic modeling to reduce the dimension of the text. Recently, fine-tuned language mod-
els such as BERT [12] have performed well on semantic benchmarks. Some research has
developed causally sufficient embeddings that retain enough information for causal iden-
tification by fine-tuning BERT models [38, 47]. By imposing multiple loss constraints,
Zhou et al. [58] addressed the bias issues in estimating textual causal effects, which were
caused by the insufficient consideration of non-confounding variables in previous work.

Most methods are built on the assumption that textual observational data con-
tains sufficient information to identify causal relationships. In these methods, it
is common practice to use methods of NLP for representing text and then refine
these representations by using deep learning structures containing causal infor-
mation [4]. These methods are effective to some extent. But high-dimensional
textual covariates do not contain only confounders, as factors that affect treat-
ment or outcome may also be contained. Similar to traditional causal inference
challenges, estimating treatment effects requires proper identification and control
of different types of variables. For instance, when examining the causal effect of
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a medication on weight loss, the treatment variable is medication use, and the
instrumental variable could be the doctor’s prescription decision, which may
influence medication use but has no direct effect on weight loss. Dietary hab-
its function as a confounding variable, affecting both medication use and weight
loss, while exercise serves as an adjustment variable that must be controlled to
accurately evaluate the effect of the medication. Research indicates that incor-
porating unnecessary covariates in high-dimensional settings leads to suboptimal
outcomes, which increase both the bias and variance of the treatment effect esti-
mate [1, 17]. In textual data, the complex interactions among multiple features
result in representations containing various latent information, which hinders
accurate causal inference. Therefore, learning textual representations that sepa-
rate coupled information and discard irrelevant factors is a critical issue.

To solve this issue, we introduce a method for estimating textual treatment effects
named Text-CDRL (text-causal disentangled representation learning). The method
decomposes textual data into three latent factors: instrumental factors, confounding fac-
tors, and adjustment factors. We construct a multitask learning framework to disentangle
latent factors effectively and adjust neural network design and training to enhance the
accuracy and robustness of textual treatment effect estimation. Our main contributions
are:

e We address a crucial issue in estimating causal effects from textual observational
data, where textual covariates may include instrumental factors, confounding fac-
tors, and adjustment factors.

e We propose a multitask learning framework, Text-CDRL, based on causal disentan-
gled representation learning, to derive three latent factors from textual covariates.
The framework employs a learning criterion of mutual information minimization to
achieve optimal, independently disentangled representations.

e In estimating the effect of the treatment from the text using decomposed latent fac-
tors, a targeted regularization approach based on nonparametric estimation is intro-
duced to incorporate targeted learning into the estimation process.

e We extensively experiment on a range of semisynthetic datasets for textual causal
inference, empirically validating the effectiveness of the proposed algorithm.

2 Related work
There are several different perspectives on current research methods, including deep

causal models for non-textual data, causal inference with NLP, and targeted learning
for causal inference.

2.1 Deep causal models for non-textual data
The absence of counterfactuals and the presence of selection bias pose significant

challenges to estimating treatment effects from observational data [18, 54]. Deep
learning models have been extensively employed in recent years to mine data for
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causation as opposed to merely correlation [25]. Many studies strive to integrate
deep neural networks and causal modeling to enhance the accuracy and objectiv-
ity of treatment effect estimation [52, 56]. When dealing with observational data,
inferring latent confounders to disentangle associations between covariates is con-
sidered an important method for learning counterfactual representations. TARNet
[44] balanced the information of the treatment and control groups through a shared
layer, enabling neural networks to learn similar representations. On this basis, the
DragonNet [45] model utilized the characteristics of neural networks that are good
at finding correlations, as well as the process of targeted regularization, to filter
out meaningful covariates for the purpose of reducing confounding. There are also
methods that focus on learning disentangled representations of confounders and
non-confounders. Latent variable modeling was integrated by Louizos et al. [34] to
fit the interaction between latent confounding factors and treatment effects. Zhang
et al. [57] proposed a data-driven TEDVAE algorithm using variational inference to
infer latent variables from observed data. In addition, there are several ways to esti-
mate treatment effects in observational studies by disentangling latent variables and
learning counterfactual regressions [5, 6, 19, 51].

However, these deep causal models frequently neglect to address causal inference
in unstructured textual data, where the high dimensionality of such data presents
significant challenges for covariate extraction. Therefore, our research focuses on
how to effectively apply deep learning and causal inference to textual data. We lev-
erage the structural extensibility and representational capabilities of deep learning
models to uncover causal relationships embedded in textual data.

2.2 Causal inference with NLP

Several current studies have attempted to integrate causal inference into textual repre-
sentation learning to better capture causal relationships. These studies involve methods
such as text as treatment [15, 38, 46, 50], text as confounder [10, 27, 39, 49], and text
as outcome [13, 16, 29]. We focus on the area of causally driven textual representation
learning, where Egami et al. [13] contend that latent representations of text are neces-
sary for nearly all text-based causal inference, providing a framework for learning latent
representations that reduce raw text to interpretable results. Current methods for com-
bining high-dimensional text with causal models for dimensionality reduction primarily
include topic models and embedding methods. Roberts et al. [39] addressed the prob-
lem of text-conditioned confounding in observational studies and relied on topic mod-
eling to reduce the dimensionality of the text. Liu et al. [31] proposed a graph-based
causal inference framework for discovering causal information in texts. With the rapid
development in the field of NLP, common text embedding methods such as GLoVe
[37] and BERT [12] are widely used for causal inference tasks in textual data. Tex-
tual covariates were represented by GloVe in CTAM [53], and information pertaining
to virtually instrumental variables in latent representations was filtered out via a con-
ditional treatment-adversarial learning procedure. CausalBERT [47] developed caus-
ally sufficient embeddings to retain enough information for causal identification and
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efficiently estimated textual causal effects by fine-tuning a pre-trained BERT model.
Pryzant et al. [38] improved proxy labels and fine-tuned BERT to adjust confounding
parts of text using remote supervision methods in order to estimate the causal effects
of linguistic attributes. Recently, Zhou et al. [58] addressed the problem of bias in the
estimation of textual causal effects due to insufficient consideration of non-confounding
variables by imposing constraints and utilizing multitask learning.

Current approaches to causal inference in text data typically do not consider a
deeper disentangled causal representation of textual covariates. Capturing the complex
causal relationships inherent in textual data requires a more in-depth decompositional
representation of the causal relationships because textual data involves frequent inter-
dependencies and latent variables. Our method conducts dimensionality reduction on
textual data and subsequently decomposes it into distinct latent factors. To achieve
independent decomposition factors, we employ a multitask learning approach, ensuring
their mutual independence. Through this process, the decomposed latent factors can be
obtained, laying the groundwork for a more precise and efficient evaluation of textual
causal effects.

2.3 Targeted learning for causal inference

In causal inference, the double robust approach is an effective tool that combines dou-
ble modeling of model treatments and outcomes and provides unbiased estimates of
causal effects when one of the models is unbiased [8, 26]. Targeted maximum likeli-
hood estimation (TMLE) utilizes information from propensity score weights and con-
ditional outcome models to update and optimize effect estimates by maximizing the
likelihood function [30, 43]. These theories make the TMLE technique suited for appli-
cation in neural networks for causal impact estimation since it yields doubly robust,
asymptotically efficient estimates of causal or target parameters. Inspired by the idea of
TMLE, Shi et al. [45] introduced additional parameters in the causal effect estimation
process to generate estimates with finite sample behavior and strong asymptotic guar-
antees. Vowels et al. [48] combined structured inference and targeted learning, apply-
ing regularizers from influence curves to reduce residual bias. In this study, we incor-
porate targeted learning into the process of estimating textual causal effects. Through a
method that introduces targeted regularization, our goal is to produce estimates of the
causal effects that are asymptotically efficient, unbiased, and doubly robust.

3 Preliminaries

Based on the preceding discussion, causal inference in text is hindered by its high
dimensionality and unstructured nature, leading to coupling between factors. Han-
dling all textual observational data as confounded can be problematic. A relevant
example involves studying the causal impact of sentiment attributes in review texts
on sales. Previous approaches typically consider observed text covariates as con-
founding factors, neglecting the deeper causal disentanglement of these text covari-
ates. Not all observed textual covariates generally act as confounders influencing
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both the treatment and the outcome. For instance, the tone of textual reviews may
serve as a confounder, while key positive vocabulary probably functions as an
instrumental factor affecting only the treatment. In contrast, the price of the product
may act as an adjusting factor influencing only the outcome.

We begin by defining the notations pertinent to our context. Assuming each
observed unit in textual causal inference is represented by a tuple O; = {X;,T,,Y,;}.
X, is the textual data we observe (e.g., each product review), T; € {0, 1} is the binary
treatment variable, and Y; is the outcome. We focus on the binary treatment vari-
able. At 7; = 1, the i-th unit is categorized within the treatment group, for instance,
with a positive sentiment attribute. At 7; = 0, the i-th unit is categorized within the
control group, for instance, with a negative sentiment attribute. The observed dataset
contains n randomly independent and identical observations from the distribution

Oil’rl’vd 'P. In causal inference, one of the challenges in estimating causal effects is that
we cannot observe the potential outcomes Y,(7; = 0) and Y,(T; = 1) for each unit,
i.e., the counterfactual outcomes are unobservable. Under certain assumptions, it is
feasible to estimate the treatment effect from observational data [36, 41]. We assume

that the following three fundamental assumptions for treatment effect estimation
hold [40]:

Assumption 1 (SUTVA) The treatment assignment of one unit must not impact the
possible outcomes of other units in order to comply with the stable unit treatment
value assumption.

Assumption 2 (Unconfoundedness) The treatment assignment is independent of
potential outcomes given observed covariates: Y,, Y| L |x.

Assumption 3 (Positivity) Every unit has a nonzero probability of receiving each
treatment level: 0 < P(r = 1|x) < L

Under the potential outcomes framework [41], if the causal assumptions are satis-
fied, then we can define the average treatment effect (ATE) as follows:

v = E[Y[|do(T = D] — E[Y|do(T = 0)] )]

The do operator shows that the effect we are interested in is causal and is used
to characterize the operation of the treatment on causality. We assume that the
observed text x carries enough information to adjust the confounding between ¢ and
y, i.e., blocking all backdoor paths. We can therefore use the adjustment method in
causal inference to estimate the causal effect. The individual treatment effect (ITE)
is defined as follows:

7, =Y(T;=1)-Y(T;=0) )
The ATE can be determined from the observed data as follows:

v =E[E[Y|X, T =1]-E[Y|X,T =0]] 3)
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To estimate the average treatment effect from finite observed textual data x, the esti-
mator is defined as follows:

0w = = ¥ (O(1,x) - 00.%)) )
i=1

where Q(t,x) = E[Y|t,x] represents the conditional expected outcome,
g(x) = P(T = 1]|x) denotes the propensity score, and g is an estimate of g. An estima-
tor function Q that accurately predicts potential outcomes is our objective to learn.
We aim to model g and Q using neural networks to estimate treatment effects from
textual observational data.

4 The Text-CDRL algorithm

In this section, we present the Text-CDRL (text-causal disentangled representation
learning) algorithm, designed to estimate causal effects from text data by learning
disentangled representations of underlying causal factors. The model follows the
causal structure in Figure. 1, and its architecture is shown in Figure. 2. Specifically,
Z, 18 the instrumental variable that influences only the treatment but not the outcome,
z, 18 the adjustment variable that influences only the outcome but not the treatment,
and z, is the confounding variable that influences both the treatment and the out-
come. Our strategy involves generating low-dimensional embedding vectors from
text sequences and subsequently performing disentangled representations of these
vectors. The text embedding vector is decomposed into three independent latent fac-
tors, which are then used to accurately identify causal effects in textual causal infer-
ence. The following subsections describe the core components and steps involved in
the algorithm.

Observed Variables
@ ______ @ ______ @ @ Text Variable

@ Treatment Variable i

e

@ Outcome Variable

@ Instrumental Variable

@ Confounding Variable
@ Adjustment Variable .

Fig. 1 Causal graph of the Text-CDRL model. Transparent nodes indicate variables that we can observe,
and shaded nodes indicate latent factors decomposed in the text covariates
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Fig.2 The architecture of the proposed Text-CDRL algorithm. The text embedding is utilized to obtain
the representation vector of the input observation text. The disentangled representation layer obtains

three different representations of latent variables through variational inference, outputting z,,z.z,. Mul-

titasking objectives are introduced at the top of the figure, including mutual information minimization
regularizer, treatment prediction, and outcome prediction, ensuring that the treatment variables are pre-

dicted by z, and z,, and the outcome variables are predicted by z, and z,

4.1 Text embedding

We first transform the observed sentences into vectors through the text embedding
layer. An effective strategy involves utilizing the pre-trained BERT model [12] to
represent textual observational data. The input to BERT consists of the observed
text x of each observation (e.g., product reviews), and the output is the hidden state
of each token. We then extract the hidden state of the [CLS] token from the output
of the BERT model to generate a representation of the text A = f(x).

Following [47], we introduce an objective function £,,;,, based on a masked
language model. The task involves randomly masking words from each text seg-
ment, and the model’s objective is to predict the identity of these masked words.

4.2 Causal disentangled representation learning

According to the previous discussion, in textual causal inference, distinguishing
between factors and removing unnecessary ones can result in a more precise and
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efficient estimate of the causal effects. Therefore, building on the low-dimen-
sional embedding A = f(x) of the text, we further disentangle the latent factors in
the representation vector 4. To learn three independent latent factors, we propose
a causal disentanglement representation layer. We use the latent variable model
variational autoencoder (VAE) [21, 28] to infer latent instrumental, confounding,
and adjustment factors.

Our objective is to learn the posterior distribution p(z|A) of the latent factor set
z=(2%.%,). Three distinct encoders, gy (z,|4), g, (z.|4), and qd,y(zyl/l), are
employed to predict the approximate variational posterior g,(z|4). Encoder ®,
infers latent instrumental factors, encoder ®, infers confounding factors, and
encoder @ infers adjustment factors. The variational posterior for approximating
parameters 44,z A), g4 (z.|2), and qd,‘_(zyM) via the encoder is defined as follows:

D

a5,z ) = [ M = iy, 0* = 67) (5)
d=1
D,

a5, G| D) = [ [ M = i, 0 = 67) 6)
d=1
D,

44,2 |0 = [ [ M = . 0* = 6] ()
d=1

where fi,, fi., i, and 62, 62, 6> are the estimated mean and variance of latent vari-
e My t’ e’ Ty

ables z,, z,, z,, respectively. We utilize a single decoder py(4|z,,z,,z,) to reconstruct
A using latent variables.

The prior distributions for p(z,), p(z.), and p(z,) are chosen as Gaussian dis-
tributions. By modeling the latent variables with Gaussian distributions, we can
effectively capture the mean and variance of each factor, ensuring that the model
accounts for variability in the data. The approach facilitates the disentangling of
instrumental, confounding, and adjustment factors while allowing for a flexible
representation of the underlying factors in the data. We use (8) to infer latent
variables:

u=W,A+b,
logo® = W A+ b, @)
Z=Uu+o00e¢

where W, and W, are weight matrices, b, and b, are bias terms for the respective
linear transformations, and e ~ A(0,I). u and o represent the mean and variance
of a Gaussian distribution parameterized by a neural network. The reparameteriza-
tion trick is expressed as z = u + o © €, where € is sampled from a standard nor-
mal distribution, and ® denotes element-wise multiplication. This reparameteriza-
tion enables efficient backpropagation of gradients through the random sampling
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process, allowing for gradient-based optimization during training. We sample from
q¢(z|ﬁ) ~ Mu, 6I) to generate z € RP: as the latent vector, where D, denotes the
dimensionality of the latent space. Given a set of training samples, the objective of
inferring latent variables from text representation is to maximize the evidence lower
bound. Thus, the objective function of latent variables inferred through VAE is:
cvae == [ELI¢,‘1¢CKI¢). [logpe(/llzt’ Zes Zy)]

+ D1 (44 (2,11 1l p(z,)

+ D (g, z D |l p(z,)

+ DKL(Q(]&) (Zyli) || p(Zy))

©)

To promote the disentanglement of latent factors and ensure that the inferred latent
variables z,, z., and z, are as independent as possible, a learning criterion is pro-
posed with the objective of minimizing mutual information. We aim to minimize the
mutual information between latent variables to ensure their independence. Mutual
information quantifies the degree of interdependence between two random variables.
Given two random variables x and y, the mutual information I(x;y) is defined as:

px,y)
Og _—
pX)p(y)

We employ CLUB [7] as an upper bound to minimize mutual information between
disentangled representations due to its computational efficiency in estimating mutual
information. While direct minimization is often intractable, CLUB provides a practi-
cal upper bound that can be optimized efficiently, facilitating the separation of latent
variables while ensuring their independence. When the conditional distribution
between variables is known, CLUB is defined as:

I(x,)’) = [Ep(x,y) ll (10)

Iclub('x’ y) :[Ep(x,y) [log p(ylx)]

11
= BB [log p (ylx)] (h

Since the conditional distribution p(ylx) is unknown in the actual scenario, we use
the variational distribution g,(y|x) to approximate it:

Ivclub(x’ y) :[Ep(x,y) [ log qO(ylx)]
(12)
—E,»Epy) [ log go(y |x)]

Thus, we can learn independent latent variables in a way that minimizes mutual
information:

Eclub = Ivclub(ZP Zc) + Ivclub(zm Zy) + Ivclub(zt’ Zy) (13)

To generate robust causal embeddings, we leverage the latent factors obtained in the
previous step to predict both the treatment and the outcome. We include two aux-
iliary classification models, Q" and g"", to ensure that treatments ¢ are predictable
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from factors z, and z,, and outcomes y are predictable from factors z, and z . For
each conditional outcome model, we utilize neural networks Q""(z;, z,., zy;HQ) to real-
ize mappings: z; = Q(0, z,2:0%) and z; - Q(l,zl‘.',zf ;091). Similarly, for the pro-
pensity score model, we employ neural networks g"(z,, z.;0%) to realize the mapping
z; = 8(2, z{;6%). Our training objective is to minimize L

1 Z nn 2

s — [(Q (ti’ an Zy;e) _)’,)
ne (14)
+ CrossEntropy(g"(z;, 2,36 1;)]

L

Through optimizing multitask objectives, we aim to disentangle causal representa-
tions in text. We expect factors influencing treatment variables to be included in z,,
factors affecting outcomes in z,, and confounding information in z.. The objective

function for predicting text treatment effects using disentangled latent variables is:
Ed = ‘Cs + a‘cvae + :B‘Cclub + y‘lem (15)

where the hyperparameters are a, f#, and y.
Algorithm 1 Text-CDRL: Text-Causal Disentangled Representation Learning
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Algorithm 1 Text-CDRL: Text-Causal Disentangled Representation Learning

Require: Observed data {X;,T},Y;}Y,, pre-trained BERT f(-), VAE encoder gy,
VAE decoder py, outcome predictor Q™", treatment predictor g™", regularization
parameter &, hyperparameters {«, 3,7,n}, batch size m, and limit on the total
number of iterations [

Ensure: Predicted potential outcomes Y (t) for t € {0,1}

1: Initialize Model parameters 0, regularization parameter €, and weights {«, 8,7, 1}
2: for iter =1 to I do
3: Sample mini-batch {iy,i2,...,im} C {1,2,..., N}
4: Extract text embeddings: A\; < f(X;)
5: Calculate Ly < MaskedLanguageModelLoss(X;, \;)
6: Disentangle latent causal factors using VAE:
(2t5 2 2y)s (bt e, piy ), (log 07 log o2, log 02) <= qg(Ni)
Minimize mutual information using CLUB: Ly, <= CLUBLosS(2¢, 26, 2y)
8: Calculate prediction loss Lg:
Ly < MSE(Q""(t, 2¢,2y),Y), Lg < CrossEntropy(g""(zc,2:),T)

=

Ly« Ly+ Ly
9: Calculate targeted regularization:
gi — (Zh - Qreg)27 Ltargeted — 77% Z gi
10: Reconstruct embedding from latent factors:
Ai < po(concat(zq, ze, 2,))
11: Calculate VAE optimization objectives:

Lyecon < ReconstructionLoss(\;, 5\1)
Liq < KLDivergence((p,loga?), N'(0,I))
Lvae — Lrecon + Lkl
12: Update model parameters: Liotal <= L + oLvac + BLclub + YLmim + Ltargeted
13: Optimize [é, €] «— argming . Liotal
14: end for
15: for t € {0,1} do
16: Y (t) < Q™ (t, 2¢, z,)
17: end for
18: return Predicted potential outcomes ¥ (0), Y (1)

4.3 Targeted regularization

Building upon propensity score models and expected conditional treatment
effect models, inspired by targeted learning [30, 45, 48], we additionally propose
a method of targeted regularization to enhance the estimation of text treatment
effects. This method combines the advantages of nonparametric estimation the-
ory, ensuring both consistency and robustness of the estimates. We introduce an
additional model parameter €, and a regularization term &, where [ is an indicator
function.
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Q(ga [j7 ZlC’ Z?y él) = Q(tia Zf? Zf)
£< ;=1  I(=0) > (16)
3= 1.2, 8, =0:2.20)

EQin 11,2530, 8) = (v, — 0@, 1, 25,7, €))° (17)

The final objective function of our model after introducing targeted regularization is:

1 .
L=Ly+n- Z E;s 11,2130, €) (18)

A ) 1
0,€ =argmin (L, +n- ) &0, 1,250, €) 19
go’g atn- Z (19)

where 7 represents the hyperparameter of the targeted regularization weights, con-
trolling the regularization weight for the target. At convergence, O and g have good
nonparametric asymptotic properties, thereby satisfying the conditions of the effi-
cient influence curve [20, 30]. By implementing targeted regularization, the estima-
tion effect of the propensity score model g and the expected outcome model Q can
be effectively improved to ensure the consistency and robustness of the estimation.
Algorithm 1 provides a detailed description of the procedure.

5 Experiments

In this section, we empirically evaluate the performance of Text-CDRL for estimat-
ing textual causal effects via causal disentangled representation learning. Experi-
mentally evaluating treatment effect estimates is challenging because known causal
effects in the text are not available. Existing work in the field addresses this problem
by generating semisynthetic datasets. In the following experiment, we empirically
evaluate the validity of our proposed model.

5.1 Datasets

Estimating textual treatment effects requires a benchmark true causal effect. How-
ever, in practice, counterfactual outcomes are unobservable, making it challenging
to obtain the actual causal effect. To address this challenge, following [47], we uti-
lize real data, including text and metadata, in combination with data generated by a
specific mechanism. This approach maintains data diversity and complexity while
enabling model evaluation. In our experimental evaluation, we primarily use the fol-
lowing two datasets.

Amazon reviews dataset We utilize the same simulation methodology as in [38] to
generate a semisynthetic dataset of Amazon reviews. Our objective is to investigate
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the causal impact of sentiment in product reviews on the decision to click on the
product. The treatment T represents the inferred sentiment from the review text,
where T = 1 indicates positive sentiment, classifying the review into the treatment
group, and 7" = 0 indicates negative sentiment, classifying the review into the con-
trol group. We employ the autocoder method from [35, 55] to infer the sentiment
score for each review. Let C denote the observed additional covariates, representing
the product types discussed in the reviews. We simulate the outcome Y.

Y ~ Bernoulli(6(8,T + B.(x(C) — B,) + €)) (20)

where f, controls the strength of the treatment, §. controls the strength of confound-
ing, f, is the bias, #(C) = P(T = 1|C) is the propensity score estimated from the
metadata, and e represents noise. The dataset ultimately contains 21,289 records. We
partition the dataset into training, validation, and test sets in a 6:1:2 ratio, respec-
tively, and conduct experiments using cross-validation.

Earnings call transcripts dataset This dataset is a balanced dataset constructed
by [58] for causal inference from textual data. The datasets are constructed for two
different treatment variables political risk and sentiment and are designed to study
issues in finance. For example, consider how sentiment causally affects stock move-
ment and stock volatility. Here, sentiment 7 serves as a binary treatment variable.
Stock movement Y, is represented as a binary outcome variable, and stock volatil-
ity Y, is represented as a real-valued outcome variable. The specific information
of this dataset is shown in Table 1. The dataset has 30,000 data points, split into
training, validation, and test sets in an 8:1:6 ratio. Cross-validation is used to run the
experiments.

5.2 Experiment setting
5.2.1 Evaluation criteria
To evaluate the performance of conditional average treatment effect (CATE) estima-

tion, we use the precision in estimating heterogeneous eftects (PEHE) metric [22],
which assesses the model’s accuracy in estimating causal effects at the individual

12
level: y/epppp = \/ % ZL (1,- - ri) . To evaluate the performance of average treat-

R, 1 N
ment effect (ATE) estimation, we use ey = |7 — 5 Qi

report 4/eppyp for the Amazon reviews dataset, as PEHE is employed as a more
robust metric for individual-level causal effect estimation, whereas ATE may be less

7;| as the metric. We

Table 1 Specific information of the earnings call transcripts dataset. The treatment variable is sentiment

Train Dev Test
Outcome Treatment Control Treatment Control Treatment Control
Stock Movement 8,000 8,000 1,000 1,000 6,000 6,000
Stock Volatility 8,000 8,000 1,000 1,000 6,000 6,000
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reliable under the given conditions. The results are detailed for both within-sample
and out-of-sample performance. Please note that, as the neural network is not super-
vised for treatment effects, the estimation of treatment effects remains equally valid
for both within-sample and out-of-sample results [45]. For the earnings call tran-
script dataset, we report the metrics y/epgyr and ears, consistent with previous
work.

5.2.2 Implementation details

It is worth noting that the text embedding layer in our model is highly flexible and
can accommodate any pre-trained model or its variants as the core architecture. To
ensure a fair comparison with previous methods, for the Amazon review dataset, we
employ the BERT-base-uncased [12] model for text embedding. For the earnings
call transcripts dataset, we utilize FinBERT [3] for textual representation, as it is
fine-tuned for financial texts. To reduce overfitting, we apply a dropout rate of 0.2 to
the hidden representations. We optimize the model using the AdamW algorithm
[33]. In the experiments, the model is trained for 3 epochs, the first 10% of the train-
ing steps are linear warm-ups, the learning rate is set to le-5, and the batch size is
set to 32. In the disentangled representation, the dimensions of the latent variable
spaces D, D, , and D, are 200. The weights for the loss functions are assigned as
follows: a = 0.001, g = 1.0, y = 0.01, and # = 1.0. By employing cross-validation,
the model is trained, with the best model being chosen according to its estimated
performance on the validation set. The hyperparameter values are determined
through a systematic search, where different combinations are tested to identify the
configuration that optimizes model performance while ensuring robustness. To
reduce the impact of randomness on individual experiment results, every experiment
is carried out five times using distinct random seeds. We report the mean and stand-
ard deviation of the results from the random initialization parameters.

5.3 Baseline methods

To compare the performance of Text-CDRL for estimating textual causal effects, we
evaluate it against seven baseline models. These models are commonly employed for
estimating treatment effects from observational data and can be categorized into two
groups: causal models based on deep neural networks and text representation mod-
els driven by causality.

Causal models based on deep neural networks include:

e TARNet [44] learns shared information representations through shared layers and
estimates individual treatment effects by predicting potential outcomes through
its network structure.

e DragonNet [45] leverages the sufficiency of propensity scores and the neural net-
work’s ability to identify correlations to select meaningful covariates.
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e CEVAE [34] addresses the important issue of dealing with confounders as a
means of estimating causal effects from observed data, incorporating the idea of
VAE to uncover hidden confounding variables.

e TEDVAE [57] uses the observable variables to infer latent components, which are
then used to untangle the variables and estimate the causal impact.

Text representation models driven by causality include:

e CausalBERT [47] creates causally adequate document embeddings. This allows
for the estimation of causal effects from observational text data while maintain-
ing pertinent causal information and controlling for confounding variables.

e TextCause [38] builds upon foundational assumptions, elevates the quality of
proxy labels through distant supervision, and integrates causal adjustment meth-
ods to estimate the causal effects of latent linguistic features.

e DIVA [58] addresses the oversight of non-confounded covariates in causal infer-
ence from text by imposing various constraints to unveil interactions among dif-
ferent variables and alleviate bias in the estimation process.

For each baseline model, the same dataset is used for training as per the official
source code or independent implementations. Ensure that all models are evaluated
under the same experimental conditions.

5.4 Main results

The results of the experiments on the semisynthetic dataset of Amazon reviews
are shown in Table 2. We observe that causally driven text representation learning
models, such as CausalBERT, TextCause, and DIVA, consistently outperform deep
causal models like TARNet, DragonNet, CEVAE, and TEDVAE. This suggests that
traditional deep causal models fail to fully utilize the implicit information in text
when dealing with complex textual data. And causally driven text representation
learning models perform well in textual causal inference tasks by introducing lan-
guage modeling and additional supervision.

Table 2 Mean and variance

M h / o / o
of the PEHE metric on the cthod CpenE WS CPEHE 008
semisynthetic dataset of TARNet 0.694+0.004 0.6930.002
Amazon reviews. Lower is
better, and bolded values DragonNet 069210003 0689i0002
indicate the best performers. CEVAE 0.692+0.003 0.691+0.003
‘ws’ indicates within-sample TEDVAE 0.689+0.003 0.689+0.002
and “oos” indicates out-of- CausalBERT 0.686:£0.001 0.685+0.001
sample. The parameters are set
t0f,=18=10=05¢=1 TextCause 0.684+0.001 0.683+0.001
DIVA 0.556+0.008 0.555+0.009
Text-CDRL 0.504+0.003 0.504+0.004
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The evaluation metrics of our proposed model consistently outperform those of
the leading baseline models, DIVA and TextCause, with the lowest 4 /€pgpg, demon-
strating significant improvements. This provides empirical evidence that Text-CDRL
is effective for estimating treatment effects from text. Furthermore, we observe that
the causal effect estimates produced by Text-CDRL and DIVA, which utilize disen-
tangled representations, significantly surpass those generated by CausalBERT and
TextCause, which do not employ disentangled representations. This demonstrates
that by decoupling covariates in textual data through representation learning, we can
disentangle different factors within the text, thereby reducing confounding effects.
This approach significantly enhances the accuracy of causal effect estimation and
improves the interpretability and robustness of the model.

The difficulty in evaluating causal effect estimation in realistic scenarios lies in
the lack of real causal validation data. However, a suitable technique for estimating
the causal impact should not require unnecessary parameter adjustments and should
be able to perform consistently across various datasets. Our experimental results
on the earnings call transcripts dataset used by DIVA verify this. We analyze the
causal effects of treatment sentiment on stock movements and stock volatility. From
Table 3, it is evident that our approach achieves the lowest \/% and e, among
the compared methods, demonstrating outstanding performance. The experimental
results illustrate that our model achieves accurate estimation of causal effects from
textual observations by using a causally disentangled representation of the text and
combining it with multitask learning. These results also further demonstrate the
applicability of our model across various real-world scenarios and underscore its
robustness to parameter selection, further validating its versatility and accuracy.

5.5 Simulation robustness evaluation

To assess our model’s robustness across varied simulation settings, we systemati-
cally adjust simulation parameters and contrast their performance with baseline text
representation models guided by causality, which exhibit superior performance. As

Table 3 Experimental results on a dataset of telephone earnings meeting transcripts. Causal effects of
sentiment on stock movements as well as stock volatility. Lower is better and best results are shown in
bold

Stock Movement Stock Volatility
Method \/ €PEHE EATE \/ €PEHE EATE
TARNet 0.497+0.001 0.089+0.010 1.213+0.019 0.491+0.049
DragonNet 0.497+0.004 0.088+0.026 1.190+0.021 0.463+0.046
CEVAE 0.499+0.004 0.079+0.020 1.211+0.024 0.491+0.044
TEDVAE 0.497+0.007 0.098+0.023 1.228+0.056 0.459+0.099
CausalBERT 0.496+0.001 0.088+0.017 1.121+0.034 0.336+0.080
TextCause 0.522+0.009 0.030+0.028 1.100+0.019 0.114+0.028
DIVA 0.481+0.001 0.015+0.003 1.010+0.007 0.027+0.008
Text-CDRL 0.480+0.001 0.007+0.006 1.005+-0.003 0.014+0.005

@ Springer



386 Page 18 of 22 Z.Yang, B. Shen

Table 4 Results of changing simulation parameter settings for the Amazon reviews semisynthetic data-
set. Columns are labeled by the level of confounding: Low, medium, and high correspond to g, = 1,
5, and 10, respectively. Lower is better, and bolded values indicate the best performers. ‘ws’ indicates
within-sample, and ‘oos’ indicates out-of-sample

Confounding  Low Medium High

Method \/€pEHE WS A/€pEHE 005 \/€pguE WS A/€pEHE 005 A/€pgug WS A/€pgnE 00S
CausalBERT  0.6959 0.6715 0.7226 0.7299 0.8259 0.8136
TextCause 0.6945 0.6958 0.7334 0.7264 0.8221 0.8101
DIVA 0.5674 0.5649 0.6065 0.6067 0.6423 0.6384
Text-CDRL 0.5116 0.5102 0.5604 0.5609 0.5659 0.5647

Table 5 Ablation studies on latent representations. Results on semisynthetic dataset of Amazon reviews.
Lower is better, and bolded values indicate the best performers. ‘ws’ indicates within-sample, and ‘oos’
indicates out-of-sample. ‘w/0 z,”: without z,; ‘w/o z,”: without z.; ‘w/o z,”: without z,

Method €ppue WS \/€pEHE 008
w/o z, 0.5049 0.5049
w/o z, 05118 0.5110
w/o z, 0.5102 0.5093
Text-CDRL 0.5041 0.5046

shown in Table 4, after increasing the noise level to € = 2 and varying the confound-
ing strength across different levels, including low (f, = 1), medium (f. = 5), and
high (f, = 10), our model consistently outperforms others under all simulation con-
ditions. It also demonstrates insensitivity to changes in simulation parameters. This
further highlights its robustness and adaptability to varying settings, providing sta-
ble results across diverse simulation environments and confirming its suitability for
handling complex, real-world scenarios.

5.6 A study on latent representations

The impact of three latent representations, z,, z,, and Zy, ON the Text-CDRL model’s
performance is then examined. When setting the latent representation dimensions
Dz,’ DZC, and Dzy to 200, we fix one of the latent variables, for instance, Dz,’ at 0 to
evaluate the performance of Text-CDRL while disregarding the influence of z,.
Table 5 illustrates the ability of Text-CDRL to decompose latent representations.
The data indicates that excluding any of the factors z,, z,, or z, prevents the model
from achieving optimal performance. However, when we set the dimensions of all
latent factors to nonzero and decompose these three latent representations simulta-
neously, the model achieves optimal performance. The results indicate that decom-
posing the text covariates into instrumental, confounding, and adjustment factors is
crucial for improving the model’s performance. This highlights the significant role
of each latent variable within the model. Considering all three latent variables
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Table 6 Ablation studies in our proposed model. Lower is better, and bolded values indicate best perfor-
mance. ‘ws’ indicates in-sample, and ‘oos’ indicates out-of-sample. ‘w/o MIM’: without mutual informa-
tion minimization; ‘w/o target-reg’: without targeted regularization

Method €pgup WS \/€pEHE ©0S
w/o MIM 0.5084 0.5095
w/o target-reg 0.5059 0.5053
Text-CDRL 0.5041 0.5046

simultaneously allows the model to more effectively extract useful information from
the text data, thereby enhancing the accuracy of causal effect estimation.

5.7 Ablation study

To validate each part of our model’s effectiveness, we do ablation experiments.
Results of the ablation investigation are summarized in Table 6. The results on the
Amazon review semisynthetic dataset indicate that the removal of mutual informa-
tion minimization and targeted regularization leads to a performance degradation of
Text-CDRL compared to the full model in terms of the /epgyr metric. This demon-
strates the contribution of each designed component to the model.

Removing the mutual information minimization component significantly
decreases performance, indicating that this learning criterion effectively promotes
the independence of latent variables, which is crucial for downstream text-causal
effect estimation. Similarly, the removal of targeted regularization results in per-
formance degradation, showing that the introduction of targeted regularization
improves the performance of causal effect estimation and exhibits good asymptotic
properties. The model achieves optimal performance only when all components are
integrated. This holistic approach, combining mutual information minimization and
targeted regularization, ensures that the latent factors remain independent and that
the textual causal effect estimations are accurate and reliable.

6 Conclusion

In this paper, we present Text-CDRL, a novel method for textual causal inference.
This method employs multitask learning to infer and disentangle three distinct latent
representations from observed textual variables. During the text embedding stage,
we represent and vectorize the input textual observational data using the pre-trained
BERT model. To infer latent variables with causal structures from textual data, vari-
ational inference is employed to decouple different latent factors. Through the appli-
cation of multiple constraints, our model effectively decomposes latent factors that
contain causal information from the text. Subsequently, we utilize these disentan-
gled factors for downstream estimation of textual causal effects. The effectiveness
of our method is validated across a range of semisynthetic datasets, including the
Amazon reviews dataset and the earnings call transcripts dataset.
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Although our approach demonstrates promising results on the current data-
set, several limitations remain. One challenge is scaling to larger datasets, where
memory constraints and computational efficiency issues may arise, particularly dur-
ing the large-scale parameter optimization involved in the disentangling of repre-
sentations and causal effect estimation. Furthermore, while the model has primarily
been evaluated on monolingual data, its performance in multilingual environments
requires further investigation and refinement to ensure broader applicability. Moreo-
ver, real-world challenges, such as selection bias, skewed distributions of response
variables, and violations of causal assumptions, could compromise the validity of
causal inference, and these factors have yet to be fully addressed in our study. In
future work, we intend to explore more robust disentangled representation methods
for textual effect estimation, expand our approach to multilingual scenarios, and
investigate ways to empirically validate methods in this domain to improve their
applicability in complex real-world settings.

Funding This work was supported by National Natural Science Foundation of China (Grant No.
62376018).
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